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1. Introduction

It appears that the fullest exposition currently available
of fully developed forced convection in a channel is that
in Bejan [1]. However, the discussion there is incomplete
in two respects. First, although the mean (bulk) tem-
perature, T,, is clearly defined as a velocity-weighted
average over the channel cross section, it is not made
explicit how T, is determined in a particular circum-
stance. Second, and more importantly, at an early stage
of the discussion, Bejan makes the assumption that the
Péclet number is large and so the axial (longitudinal)
conduction term is negligible in comparison with the
transverse (radial or cross-channel) conduction term in
the energy equation. A scaling analysis then leads to the
conclusion that, if thermal boundary layers are merged
(i.e., there is thermally fully developed flow), the Nusselt
number, Nu, is a constant of order 1, and as a result the
temperature distribution is such that (7, — 7)/(T\, — T},)
is a function of the transverse coordinate only. (Here
T denotes the fluid temperature, T, denotes the wall
temperature and it is assumed that the velocity profile is
fully developed.)

As a result the reader is left with the impression that
negligible axial conduction is a necessary assumption for
the formation of a fully developed temperature profile
and consequently that the Nusselt number is independent
of the axial coordinate. The main purpose of this note is
to point out that this is not necessarily so for one par-
ticular velocity distribution, namely slug flow. (The slug
flow profile is appropriate to a porous medium when
Darcy’s Law is valid, and it is also appropriate for the
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hydrodynamically undeveloped flow of a fluid of low
Prandtl number.) The question of determining 7, is also
addressed.

2. Analysis, results and discussion

We consider the forced convection flow of a Newtonian
incompressible fluid (with constant properties) along a
regular (constant cross-section area) channel with the
same two sorts of thermal boundary conditions as did
Bejan [1], namely uniform wall heat flux or uniform wall
temperature. We now demonstrate that for the cases of
uniform wall heat flux and uniform wall temperature the
effect of axial conduction on Nu is zero, provided that
the velocity profile is one of slug flow.

2.1. Case A—uniform wall heat flux

It has been widely reported (see, for example, Ref. [2])
that in the case of uniform heat flux the effect of axial
conduction on the value of Nu is zero, a direct conse-
quence of zero axial temperature gradient, but without
any precise explanation of why this is so. The result does
not follow solely from an application of the First Law of
Thermodynamics applied to the bulk flow.

In fact, the First Law of Thermodynamics, as applied
to a channel section of area 4 and infinitesimal length
dx, requires that the axial enthalpy variation equals the
total heat crossing the channel boundaries, and therefore

UA . dz—;n _ ,,+Adqt/:/d
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where p is the fluid density, U is in general the fluid
average velocity, A is the cross-section area of the chan-
nel, ¢, is the fluid specific heat at constant pressure, T, is
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the mean bulk fluid temperature, p is the perimeter of the
channel, ¢” is the solid boundary heat flux, and ¢, is the
heat diffused by conduction through the fluid across 4
(constant 4 and k) a parameter related to the fluid cross-
section averaged temperature 7, via the definition

1 dT d/1 dT,
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The last term of equation (1), i.e., the longitudinal
diffusion term, is routinely neglected from the analysis.
Observe that equation (2) defines T',. In the case of slug
flow T, = T,, and equation (1) reduces to

2
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where o is the thermal diffusivity of the fluid. Equation (3)
can be easily solved for a channel with isoflux boundary
condition (uniform ¢”) using the variation of parameters
technique [3]. The mean-temperature solution is

rq’ AP
Th(x) = ; Ze 4
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where C, and C, are two arbitrary constants to be deter-
mined using two conditions at x = 0, the start of the
heating section. These conditions are the values of the
cross-section averaged temperature equal to Ty, and the
zero longitudinal temperature gradient. Equation (4) can
then be rewritten as,

To(0) = Tyt <pi’%(]>{x+ %[e’%‘é }} )

Therefore, the First Law indicates only that T, is the
sum of a term which increases linearly, and one which
decreases exponentially, in the longitudinal direction
when longitudinal diffusion is not neglected. We can
show now that for the case of slug flow, the Nusselt
number is a constant, i.e., unaffected by the longitudinal
diffusion even when longitudinal diffusion is present. We
start by considering T,, = T, (slug flow) and the defi-
nition of T, equation (2),

dT, 1[or
L. A.
dx AL (3xd ©

When U is a constant, the differential equation expressing
the conservation of energy (e.g., equation (8) for one
case) is such that the axial and transverse variables can
be separated. It follows that d7/0x can be written in the
form f(x)g,(¢, n), where (£, ) are the coordinates in the
transverse place. Then equation (6) implies that d7,,/dx
is of the form Cf{(x), where C is a constant resulting from
the integration of g,(¢,n) on A. Thus 07/0x =
[9:(&, m)/C1dT,/dx = g5(¢,m)dT,,/dx. Since the flow is
assumed to be thermally fully developed, ¢g,(&, 1) = 1. (If
this was not so, then the difference between 7 and T,,

would grow without bound as x increases.) Since T, is
just T at a particular (&, ) location, it follows that

a(Ti ’Ivm) _ d(Twi Tm) _
ox dx h

0. 7

Finally, wusing the Nusselt number definition
Nuocq"/(T,—T,,), one deduces the Nu is constant for
uniform heat flux and slug flow even when longitudinal
diffusion is not neglected.

2.2. Case B—uniform wall temperature

We now demonstrate that for the case of uniform wall
temperature the effect of axial conduction on Nu is also
zero, provided that the velocity profile is one of slug flow.
This is so because, although the boundary heat flux ¢”
and the temperature difference 7\, — T,, each depend on
the axial coordinate x, their ratio is independent of x. In
order to be explicit, we now consider separately the cases
of flow between parallel flat plates and flow in a circular
cylinder.

2.3. Case Bl—parallel plates

Suppose that the plates are at y = + H and the uniform
velocity is U in the x-direction. The pointwise energy
equation for the temperature 7 is
uor T  o°T
o 0X  ox? oyt

®)

where o is the thermal diffusivity, and the boundary con-
ditions are

T=T, at y=+H. ©)]

The method of separation of variables leads to the solu-
tion

T—T, = X(x)cos(ny/2H) (10)
where
X(x) = e™?*(4ef* + Be=F) an
A and B are arbitrary constants, and
B=(+n*a?/4AH>*U*)"2. (12)
The bulk mean temperature is thus
T, = T+ Q1) X(x). (13)
The Nusselt number is defined as

2H "
Nu :77(quan,) (14)
where
q" = k(0T|0y), -y = (nk/2H) X (x), 15

and k is the thermal conductivity of the fluid. Substitution
of equations (13) and (15) into equation (14) then gives

Nu = 7/2 = 4.93, (16)

independent of the value of x and independent of the
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Peclét number. This value is reasonable well known; see,
for example, Ref. [4].

In order to determine the axial temperature distri-
bution, the constants 4 and B must be found. This can
be done using equation (13) if the value of T, is measured
at two values of x.

2.4. Case B2—circular cylinder

Let R be the radius of the cylinder. In place of equation
(9) one now has

T=T, at r=R, (17)
and in place of equation (10) one finds that
T=T,+X(x)Jy(Ar), (18)

where X(x) is still given by equation (11) and, in order
to satisfy equation (17),

AR = 2.40482 (19)
this being the first zero of the Bessel function of the first

kind of order zero, J,(z). Using standard results of Bessel
function, it is then found that

T, = T, +2X(x)J, (AR)//R. (20)
The Nusselt number is given by
Nu = 2R[0T/or],-x/(T\y — Ty) 21

and when use is made of equations (20) and (21) one
obtains

Nu = (nR)* = 5.78. (22)

The same result for Nu can also be obtained directly by
observing that the equation analogous to equation (3.72)

of Bejan [1] can be written as Bessel’s equation of order
zero in the independent variable Nu'?(r/R). Again, Nu is
independent of the x-coordinate and independent of the
Péclet number. The value 5.78 agreed with that given by
Bejan [5], who referred at this point to Rohsenow and
Choi [6], who in fact give the less accurate value 5.75,
while Kays and Harnett [4] list the value 5.80. None of
these authors gives information about the temperature
distribution.

In summary, when one has a uniform velocity profile
(slug flow), the value of the Nusselt number is not affected
by finite axial conduction, for the case of uniform heat
flux or uniform temperature boundary conditions. When
the velocity varies with the transverse coordinate the
situation will be otherwise.
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