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0[ Introduction

It appears that the fullest exposition currently available
of fully developed forced convection in a channel is that
in Bejan ð0Ł[ However\ the discussion there is incomplete
in two respects[ First\ although the mean "bulk# tem!
perature\ Tm\ is clearly de_ned as a velocity!weighted
average over the channel cross section\ it is not made
explicit how Tm is determined in a particular circum!
stance[ Second\ and more importantly\ at an early stage
of the discussion\ Bejan makes the assumption that the
Pe�clet number is large and so the axial "longitudinal#
conduction term is negligible in comparison with the
transverse "radial or cross!channel# conduction term in
the energy equation[ A scaling analysis then leads to the
conclusion that\ if thermal boundary layers are merged
"i[e[\ there is thermally fully developed ~ow#\ the Nusselt
number\ Nu\ is a constant of order 0\ and as a result the
temperature distribution is such that "Tw−T#:"Tw−Tm#
is a function of the transverse coordinate only[ "Here
T denotes the ~uid temperature\ Tw denotes the wall
temperature and it is assumed that the velocity pro_le is
fully developed[#

As a result the reader is left with the impression that
negligible axial conduction is a necessary assumption for
the formation of a fully developed temperature pro_le
and consequently that the Nusselt number is independent
of the axial coordinate[ The main purpose of this note is
to point out that this is not necessarily so for one par!
ticular velocity distribution\ namely slug ~ow[ "The slug
~ow pro_le is appropriate to a porous medium when
Darcy|s Law is valid\ and it is also appropriate for the
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hydrodynamically undeveloped ~ow of a ~uid of low
Prandtl number[# The question of determining Tm is also
addressed[

1[ Analysis\ results and discussion

We consider the forced convection ~ow of a Newtonian
incompressible ~uid "with constant properties# along a
regular "constant cross!section area# channel with the
same two sorts of thermal boundary conditions as did
Bejan ð0Ł\ namely uniform wall heat ~ux or uniform wall
temperature[ We now demonstrate that for the cases of
uniform wall heat ~ux and uniform wall temperature the
e}ect of axial conduction on Nu is zero\ provided that
the velocity pro_le is one of slug ~ow[

1[0[ Case A*uniform wall heat ~ux

It has been widely reported "see\ for example\ Ref[ ð1Ł#
that in the case of uniform heat ~ux the e}ect of axial
conduction on the value of Nu is zero\ a direct conse!
quence of zero axial temperature gradient\ but without
any precise explanation of why this is so[ The result does
not follow solely from an application of the First Law of
Thermodynamics applied to the bulk ~ow[

In fact\ the First Law of Thermodynamics\ as applied
to a channel section of area A and in_nitesimal length
dx\ requires that the axial enthalpy variation equals the
total heat crossing the channel boundaries\ and therefore

rUAcp
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� pqý¦A

dqýcd
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"0#

where r is the ~uid density\ U is in general the ~uid
average velocity\ A is the cross!section area of the chan!
nel\ cp is the ~uid speci_c heat at constant pressure\ Tm is
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the mean bulk ~uid temperature\ p is the perimeter of the
channel\ qý is the solid boundary heat ~ux\ and qýcd is the
heat di}used by conduction through the ~uid across A
"constant A and k# a parameter related to the ~uid cross!
section averaged temperature TA via the de_nition

qýcd �
0
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−k
dT
dx

dA � −k
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T dA1� −k
dTA
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[

"1#

The last term of equation "0#\ i[e[\ the longitudinal
di}usion term\ is routinely neglected from the analysis[
Observe that equation "1# de_nes TA[ In the case of slug
~ow TA � Tm and equation "0# reduces to

d1Tm

dx1
¦0
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� 0

p
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where a is the thermal di}usivity of the ~uid[ Equation "2#
can be easily solved for a channel with iso~ux boundary
condition "uniform qý# using the variation of parameters
technique ð2Ł[ The mean!temperature solution is

Tm"x# � 0
pqý

rcpAU1x¦C00
a

U1 e−
Ux
a ¦C1 "3#

where C0 and C1 are two arbitrary constants to be deter!
mined using two conditions at x � 9\ the start of the
heating section[ These conditions are the values of the
cross!section averaged temperature equal to T9\ and the
zero longitudinal temperature gradient[ Equation "3# can
then be rewritten as\

Tm"x# � T9¦0
pqý

rAcpU16x¦
a

U $e−
U
a

x−0%7[ "4#

Therefore\ the First Law indicates only that Tm is the
sum of a term which increases linearly\ and one which
decreases exponentially\ in the longitudinal direction
when longitudinal di}usion is not neglected[ We can
show now that for the case of slug ~ow\ the Nusselt
number is a constant\ i[e[\ una}ected by the longitudinal
di}usion even when longitudinal di}usion is present[ We
start by considering Tm � TA "slug ~ow# and the de_!
nition of TA\ equation "1#\

dTm
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�

0
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1T
1x

dA[ "5#

When U is a constant\ the di}erential equation expressing
the conservation of energy "e[g[\ equation "7# for one
case# is such that the axial and transverse variables can
be separated[ It follows that 1T:1x can be written in the
form f"x#`0"j\ h#\ where "j\ h# are the coordinates in the
transverse place[ Then equation "5# implies that dTm:dx
is of the form Cf"x#\ where C is a constant resulting from
the integration of `0"j\ h# on A[ Thus 1T:1x �
ð`0"j\ h#:CŁdTm:dx � `1"j\ h#dTm:dx[ Since the ~ow is
assumed to be thermally fully developed\ `1"j\ h# � 0[ "If
this was not so\ then the di}erence between T and Tm

would grow without bound as x increases[# Since Tw is
just T at a particular "j\ h# location\ it follows that

1"T−Tm#
1x

�
d"Tw−Tm#

dx
� 9[ "6#

Finally\ using the Nusselt number de_nition
Nu�qý:"Tw−Tm#\ one deduces the Nu is constant for
uniform heat ~ux and slug ~ow even when longitudinal
di}usion is not neglected[

1[1[ Case B*uniform wall temperature

We now demonstrate that for the case of uniform wall
temperature the e}ect of axial conduction on Nu is also
zero\ provided that the velocity pro_le is one of slug ~ow[
This is so because\ although the boundary heat ~ux qý
and the temperature di}erence Tw−Tm each depend on
the axial coordinate x\ their ratio is independent of x[ In
order to be explicit\ we now consider separately the cases
of ~ow between parallel ~at plates and ~ow in a circular
cylinder[

1[2[ Case B0*parallel plates

Suppose that the plates are at y � 2H and the uniform
velocity is U in the x!direction[ The pointwise energy
equation for the temperature T is

U
a

1T
1x

�
11T

1x1
¦

11T

1y1
\ "7#

where a is the thermal di}usivity\ and the boundary con!
ditions are

T � Tw at y �2H[ "8#

The method of separation of variables leads to the solu!
tion

T−Tw � X"x# cos"py:1H# "09#

where

X"x# � eUx:1a"Aebx¦Be−bx# "00#

A and B are arbitrary constants\ and

b �"0¦p1a1:3H1U1#0:1[ "01#

The bulk mean temperature is thus

Tm � Tw¦"1:p#X"x#[ "02#

The Nusselt number is de_ned as

Nu �
1H
k

qý
"Tw−Tm#

"03#

where

qý � k"1T:1y#y � H �"pk:1H#X"x#\ "04#

and k is the thermal conductivity of the ~uid[ Substitution
of equations "02# and "04# into equation "03# then gives

Nu � p1:1 � 3[82\ "05#

independent of the value of x and independent of the
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Pecle�t number[ This value is reasonable well known^ see\
for example\ Ref[ ð3Ł[

In order to determine the axial temperature distri!
bution\ the constants A and B must be found[ This can
be done using equation "02# if the value of Tm is measured
at two values of x[

1[3[ Case B1*circular cylinder

Let R be the radius of the cylinder[ In place of equation
"8# one now has

T � Tw at r � R\ "06#

and in place of equation "09# one _nds that

T � Tw¦X"x#J9"lr#\ "07#

where X"x# is still given by equation "00# and\ in order
to satisfy equation "06#\

lR � 1[39371 "08#

this being the _rst zero of the Bessel function of the _rst
kind of order zero\ J9"z#[ Using standard results of Bessel
function\ it is then found that

Tm � Tw¦1X"x#J0"lR#:lR[ "19#

The Nusselt number is given by

Nu � 1Rð1T:1rŁr�R:"Tw−Tm# "10#

and when use is made of equations "19# and "10# one
obtains

Nu �"pR#1 � 4[67[ "11#

The same result for Nu can also be obtained directly by
observing that the equation analogous to equation "2[61#

of Bejan ð0Ł can be written as Bessel|s equation of order
zero in the independent variable Nu0:1"r:R#[ Again\ Nu is
independent of the x!coordinate and independent of the
Pe�clet number[ The value 4[67 agreed with that given by
Bejan ð4Ł\ who referred at this point to Rohsenow and
Choi ð5Ł\ who in fact give the less accurate value 4[64\
while Kays and Harnett ð3Ł list the value 4[79[ None of
these authors gives information about the temperature
distribution[

In summary\ when one has a uniform velocity pro_le
"slug ~ow#\ the value of the Nusselt number is not a}ected
by _nite axial conduction\ for the case of uniform heat
~ux or uniform temperature boundary conditions[ When
the velocity varies with the transverse coordinate the
situation will be otherwise[
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